SHORT PAPERS

TABLE 111

. Fused Quartz
Strip eers(w)at
Width
(mm)  eer (st) eetr (0) 4 GHz 8 GHz 12 GH:z 16 GH:z
3.00 3.25 3.26 3.28 3.31 3.36
1.50 3.06 3.09 3.10 3.12 3.15
1.00 2.96 2.97 2.98 2.99 3.02 3.06
0.50 2.81 2.86 2.87 2.88 2.89
0.15 2.63 2.66 2.67 2.67 2.68

Alumina

2.00 8.30 7.85 8.06 8.31 8.60
0.90 7.63 7.07 7.27 7 40 7.60
0.58 7.33 6.86 6.93 7 11 7.31 7.52
0.20 6.76 6.25 6.30 6.40 6.50
0.07 6.41 6.00 6.00 6.10 6.20

ment with the static theory (Fig. 4). The orientation of the crystal-
lites depends on the manufacturing processes and is not necessarily
constant over the substrate. The anisotropy in alumina substrates
can be inconvenient, especially when used for circuits comprising
narrow-band filters and when experimentally verifying theories.
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The Green’s Function for Poisson’s Equation
in a Two-Dielectric Region

ANTONIO F. pos SANTOS axp VICTOR R. VIEIRA

Abstract—The validity of the reciprocity relation satisfied by the
Green’s function for Poisson’s equation in a two-dielectric region is
briefly discussed.

INTRODUCTION

In calculating the parameters of a stripline by variational tech-
niques it is often necessary to determine first a Green’s function for
the two-dimensional Poisson’s equation in the region bounded by the
two conductors [1], [2]. Contrary to the case of a single dielectric
[2], the symmetry properties of the Green’s function in a two-dielec-
tric region do not appear to have been dealt with in the literature.

The aim of this short paper is to point out that the reciprocity
relation satisfied by the Green's function in the latter case is only
valid for a specific form of the right-hand side of the differential equa-
tion defining the Green’s function. Only the Green's function subject
to Dirichlet boundary conditions will be considered.
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Fig. 1.

REcIPrROCITY RELATION

Let G(r, #y) be the function satisfying the following conditions in
the two-dielectric region 4 =.1,\UA4> (see Fig. 1):
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Applying the Green's identity [2] separately to regions 4, and
As, in which G and its first-order partial derivatives are continuous
with the only exception of the source point (r=rg), the following
equations are readily obtained:
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where (z: and G:denote G(r, r1) and G(r, rz), respectively. Substitution
of (1c) and (1d) into these equations yields the reciprocity relation

G(r, r2) = G(re, 71) 3)

which shows that the Green’s function is symmetric in its two argu-
ments. Examination of (2a) and (2b) shows, however, that if the
RHS of (la) is simply 6(r —ro), the reciprocity relation (3) no longer
holds. [n fact, it can be shown without much difficulty that in this
case, the function G is not the true Green’s function for Poisson’s
equation subject to the boundary conditions (1¢) and (1d).

Finally we note that in view of relation (3), to determine G com-
pletely it is sufficient to consider the case where the source point is
located in one of the two-dielectric regions, e.g., 4;.

REFERENCES

[1] D. L. Gish and O. Graham, “Characteristic impedance and phase velocity of a
dielectric-supported air strip transmission line with side walls,” IEEE Trans.
Microwave Theory Tech., vol. MTT-18, pp. 131148, Mar. 1970,

[2] R. E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill, 1960,
ch, 2.

“Unfolding” the Lange Coupler
RAYMOND WAUGH anp DAVID LACOMBE

The broad-band microstrip quadrature coupler described by
Lange [1] is shown in Fig. 1(a). True quadrature coupling over an
octave is realized as a consequence of the interdigital coupling section
which compensates for even- and odd-mode phase velocity dispersion
over the wide frequency range. A power-split variation between the
direct and coupled ports, ports 3 and 4, respectively, in Fig. 1(a), of
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